Molecular adaptation and convergent evolution of frugivory in Old World and neotropical fruit bats

Authors: Kai Wang1,2, Shilin Tian1,3, Jorge Galindo-González4, Liliana M. Dávalos5, Yuzhi Zhang1, and Huabin Zhao*1,6

Affiliations:
1Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
2The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
3Novogene Bioinformatics Institute, Beijing 100089, China
4Biotechnology and Applied Ecology Institute (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz 91090, Mexico
5Department of Ecology and Evolution and Center for Inter-Disciplinary Environmental Research, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
The College of Science, Tibet University, Lhasa 850000, China

Correspondence to
Huabin Zhao
Department of Ecology, College of Life Sciences, Wuhan University
299 Bayi Road, Wuhan, Hubei 430072, China
Tel: +86-27-68753526; Fax: +86-27-68752397
Email: huabinzhao@whu.edu.cn

Running head: Convergent evolution of fruit bats

Key words: adaptation, genome, diet, convergence, pseudogenization, bats
ABSTRACT

Although cases of independent adaptation to the same dietary niche have been documented in mammalian ecology, the molecular correlates of such shifts are seldom known. Here we used genome-wide analyses of molecular evolution to examine two lineages of bats that, from an insectivorous ancestor, have both independently evolved obligate frugivory: the Old World family Pteropodidae and the neotropical subfamily Stenodermatinae. New genome assemblies from two neotropical fruit bats (Artibeus jamaicensis and Sturnira hondurensis) provide a framework for comparisons with Old World fruit bats. Comparative genomics of 10 bat species encompassing dietary diversity across the phylogeny revealed convergent molecular signatures of frugivory in both multi-gene family evolution and single-copy genes. Evidence for convergent molecular adaptations associated with frugivorous diets includes the composition of three subfamilies of olfactory receptor genes, losses of three bitter taste receptor genes, losses of two digestive enzyme genes, and convergent amino acid substitutions in several metabolic genes. By identifying suites of adaptations associated with the convergent evolution of frugivory, our analyses both reveal the extent of molecular mechanisms under selection in dietary shifts, and will facilitate future studies of molecular ecology in mammals.
INTRODUCTION

Finding, obtaining and digesting food places some of the most powerful selective demands in all organisms, resulting in a range of morphological and physiological adaptations often characterizing vertebrate adaptive radiations (Martin & Richards, 2019). Although the molecular basis of dietary variation is seldom known, recent advances in comparative genomics have revealed unique signals of molecular dietary adaptations in insects (Duncan et al., 2014), hummingbirds (Baldwin et al., 2014), and snakes (Vonk et al., 2013). Yet, since single instances of shifts into a new niche often correlate to other traits besides diet, the occupation of similar niches emerging repeatedly from independent ancestors provides a uniquely powerful test of adaptation to a particular lifestyle (e.g. high-altitude adaptation) (Lim et al., 2019), or diet (Hu et al., 2017).

Living mammals have extraordinarily diverse diets, encompassing all available dietary niches on Earth (Wilson & Reeder, 2005). Among all mammalian orders, Chiroptera (bats) has the widest variety of diets, which include insects and other arthropods, mammals, birds, reptiles, amphibians, fish, blood, carrion, fruit, flowers, nectar, pollen, and foliage (Altringham, 1996). Based on paleontological and phylogenetic analyses, ancestral bats are inferred to have been insectivorous (Gunnell & Simmons, 2005; Jiao et al., 2019; Simmons et al., 2008), whereas modern bats show independent origins of frugivory, nectarivory, carnivory, and omnivory that are unparalleled in other mammalian clades (Neuweiler, 2000). Although approximately 70% of all bats are insectivorous, two lineages that first diverged around 64 million years ago (Teeling et al., 2005) have independently evolved obligate frugivory. One is the family Pteropodidae (also known as Old World fruit bats, within the suborder Yinpterochiroptera), and the other is the subfamily Stenodermatinae (referred to hereafter as neotropical fruit bats, within the family Phyllostomidae and in the other suborder Yangochiroptera) (Voigt et al., 2011). The former lineage occurs only in Africa and Eurasia, the Old World, whereas the latter occurs only in the Americas. Thus, the two lineages represent a rare but classic example of convergent evolution of frugivory.

Dietary changes generate strong selective demands on sensory perception, digestion, and metabolism, because sensory perception is partially dedicated to selecting and ingesting food, and...
digestion and metabolism are required for the conversion of food to energy and the transport of nutrients to cells. Identifying genetic signatures associated with dietary changes can provide valuable insights into understanding animal evolution and diet-related diseases in humans. For example, the bitter taste receptor gene numbers are generally shaped by diet across vertebrates (Hong & Zhao, 2014; Li & Zhang, 2014; Wang & Zhao, 2015), suggesting that the sense of taste must play an important role in selecting their dietary components. Similarly, the evolution of digestive enzyme genes, such as the chitinase genes (CHIAs), the trehalase gene (Treh), and the amylase gene (AMY), is largely correlated with dietary changes in mammals (Emerling et al., 2018; Jiao et al., 2019; Pajic et al., 2019). The metabolic enzyme alanine-glyoxylate aminotransferase (AGT) appears to have undergone molecular adaptations to diet in birds and mammals, with a tendency for AGT to target mitochondria in carnivorous species, and peroxisomes in herbivorous species (Birdsey et al., 2005; Wang et al., 2019). In addition, convergent losses of Paraoxonase 1 in all marine mammals may have linked to changes in lipid metabolism from land to water (Meyer et al., 2018).

In this study, we identified molecular signatures of convergent evolution underlying obligate frugivory in Old World and neotropical fruit bats by comparing published Old World bat genomes with two novel genome sequences of neotropical fruit bats. Our analyses examined all the olfactory receptor genes, bitter taste receptor genes, digestive enzyme genes and genes with convergent amino acid substitutions to reveal molecular adaptations contributing to convergent evolution of frugivory.

MATERIALS AND METHODS

Illumina paired-end and mate-pair sequencing

The Jamaican fruit-eating bat, Artibeus jamaicensis, was sampled in Morelia, Michoacán, Mexico; the yellow-shouldered bat, Sturnira hondurensis, was collected in the central coast, Veracruz, Mexico. The collection permits were issued by the General Directorate of Wildlife SEMARNAT Mexico (SGPA/DGVS/08711/15 and SGPA/DGVS/13168/14). Both species belong to the subfamily Stenodermatinae (Figure 1), whose species are predominantly or obligate
frugivores (Altringham, 1996). Although *A. jamaicensis* feeds on some insects (around 10% in their diet), this species is predominantly frugivorous (Wilman et al., 2014). For convenience, we classified *A. jamaicensis* into the category: obligate frugivore. All experiments on the bats were approved by the Ethics Committee of Biotechnology and Applied Ecology Institute and Wuhan University, and conformed to the rules and guidelines on animal experimentation in Mexico and China. Genomic DNA (1.5 μg per sample) was extracted from the liver of one individual from two neotropical fruit bat species (*A. jamaicensis* and *S. hondurensis*). Sequencing libraries were generated using a Truseq Nano DNA HT Sample Preparation Kit (Illumina, San Diego, CA, USA) following the manufacturer’s instructions. Index codes were added to identify sequences from each sample. Briefly, the DNA sample was fragmented by sonication to short-insert (180 bp and 500 bp) for paired-end and long-insert (2 kb and 5 kb) for mate-pair sequencing. Next, the DNA fragments were end-polished, A-tailed, and ligated with the full-length adapters for Illumina sequencing with further PCR amplification. Finally, PCR products were purified (AMPure XP system, Beckman Coulter, USA), and libraries were analyzed for size distribution using an Agilent 2100 Bioanalyzer, and quantified using real-time PCR. We generated 247.95 and 206.73 Gb raw data using the Illumina Hiseq platform for the two species, respectively (Supporting Information Table S1).

10X Genomics library construction, sequencing and extending scaffold

DNA sample preparation, indexing, and barcoding were done using the GemCode Instrument from 10X Genomics. About 1 ng input DNA (50 kb in length) was used for the GEM reaction procedure during PCR, and 16-bp barcodes were introduced into droplets. The droplets were then fractured following the purification of the intermediate DNA library. Next, DNA was sheared into 500-bp fragments for constructing libraries, which were subsequently sequenced on the NovaSeq instrument. After sequencing, we used the supernova-2.0.0 software to tackle the FASTQ files containing the barcoded reads and build a graph-based assembly to produce a FASTA file suiTable for downstream processing and analysis. In total, we generated 230.33 and 172.60Gb raw data for the two bat genomes, respectively (Supporting Information Table S1).

This article is protected by copyright. All rights reserved
Sequence quality checking and filtering

We used strict filters to avoid reads with artificial biases. First, we removed low-quality paired reads that mainly resulted from base-calling duplicates and adaptor contamination (i.e. with $\geq 10\%$ unidentified nucleotides ‘N’; >10 nucleotides aligned to the adaptors, allowing $\leq 10\%$ mismatches; $>50\%$ nucleotides having phred quality <5; and putative PCR duplicates generated in the library construction process). Ultimately, we generated 802.78 Gb of high-quality data (451.89 Gb for *A. jamaicensis* and 350.89 Gb for *S. hondurensis*) (Supporting Information Table S1). There were 92.18\% (*A. jamaicensis*) and 89.65\% (*S. hondurensis*) nucleotides with phred quality \geqQ30 (with an accuracy of 99.9\%) in the two genomes (Supporting Information Table S1).

Estimation of genome size using the K-mer method

The genome size was estimated based on the k-mer spectrum: $G = (K_{total} - K_{error})/D$, where G is the genome size, K_{total} is the total count of k-mers, K_{error} is the total count of low-frequency (≤ 3) k-mers that were likely caused by sequencing errors, and D is the k-mer depth. We used Jellyfish (v2.1.3) (Marcais & Kingsford, 2011) to generate 17-mer information based on the high-quality short-insert reads (180 bp and 500 bp). Therefore, the estimated sizes of two bat genomes were 2.19 Gb for *A. jamaicensis* and 2.37 Gb for *S. hondurensis*.

De novo assembly

The high-quality paired-end reads of 180-bp, 500-bp, 2-kb and 5-kb DNA libraries were first assembled using the program ALLPATHS-LG (Butler et al., 2008), then gap-filled with the package Gapcloser (version 1.12) (Luo et al., 2012), and finally the scaffolds were improved using the fragScaff program (Adey et al., 2014). First, the primary genome assembly was generated with the program ALLPATHS-LG. We built unipaths using a minimum overlap of $K=96$. The short-insert reads (180 bp and 500 bp) were first error-corrected, then merged into single
‘super-reads’. These were then formed into an initial unipath graph. This graph is expected to be highly accurate, although it has gaps arising from biases in the Illumina data. Some of these gaps in the unipath graph were filled using the jumping reads (2 kb and 5 kb), ignoring their pairing. We used the unipath graph to first determine the fragment size distribution of the jumping pairs reads, then estimate the distances between unipaths. Second, we used the jumping links to connect the unipaths into a primary graph. Illumina’s short-insert paired-end reads and 10X Genomics linked reads were used to perform gap-filling with the package Gapcloser (version 1.12). Finally, the resulting scaffolds from the previous step were further connected to super-scaffolds by 10X Genomics linked-read data using the fragScaff software (Adey et al., 2014).

Assessment of genome assembly quality

To validate the single-base accuracy of the genome assemblies, we realigned the high-quality reads of the short-insert (500 bp) DNA libraries to the assemblies with BWA (Li & Durbin, 2009), and found that more than 97.41% and 96.54% of the two bat genomes had a coverage depth ≥10, respectively. We then performed variant calling with SAMtools (Xavier et al., 2011) and obtained heterozygous single-nucleotide polymorphisms.

Repeat annotation

We identified the repetitive sequences for the assembled genome using a combination of homology searching and ab initio prediction.

(a) Homology-based prediction

RepeatMasker (version open-4.0.5) and RepeatProteinMask (http://www.RepeatMasker.org) were used to search against the Repbase TE library (RM database vision 20140131) (Bergman & Quesneville, 2007).

(b) Ab initio prediction

We built a de novo repeat library for each genome using package RepeatModeler (version 1.73), which uses two core programs BuildDatabase and RepeatModeler to annotate the TE
families. We then found that 28.06% of the *A. jamaicensis* genome and 32.69% of the *S. hondurensis* genome was composed of repetitive elements.

Protein coding gene prediction

We performed gene prediction through a combination of homology-based, transcriptome-based, and *ab initio* prediction methods for the two genome assemblies.

(a) Homology-based prediction

The Protein repertoires of vertebrates including *Desmodus rotundus* (GCF_002940915.1), *Eptesicus fuscus* (GCF_000308155.1), *Equus caballus* (GCF_000002305.2), *Mus musculus* (GCF_000001635.26), and *Homo sapiens* (GCF_000001405.38) were used as queries to search against the newly assembled genomes using the genBlastG program (v1.0.138), with default parameters (She et al., 2009). Genomic regions with hits (and their flanking 1-kb regions in both directions) were conjoined using an in-house Perl script. Then, each retrieved genomic sequence was aligned against the matching proteins using Genewise (Birney et al., 2004) to define gene models. Homology predictions were denoted as the Homology-set.

(b) Transcriptome-based prediction

From the National Center for Biotechnology Information (NCBI) database, we downloaded about 14.2 Gb of RNA-seq data from *A. jamaicensis* (accession numbers: SRR539297), which was then assembled with Trinity (Grabherr et al., 2011). These assembled sequences were aligned against the newly assembled genome using the Program to Assemble Spliced Alignment (PASA) (Haas et al., 2003). Valid transcript alignments were clustered based on genome mapping locations, and assembled into gene structures. Gene models created by PASA were denoted as the PASA-T-set (PASA Trinity set). In addition, RNA-seq reads were directly mapped to the assembled genome using Tophat (Kim et al., 2013) to identify putative exon regions and splice junctions. Cufflinks (Trapnell et al., 2012) was used to assemble the mapped reads into gene models (Cufflinks-set).
(c) Ab initio prediction

Augustus (Stanke & Waack, 2003), GlimmerHMM (Majoros et al., 2004) and SNAP (Korf, 2004) were also used to predict coding regions in the repeat-masked genomes. They were all trained by the PASA-T-set gene model. The resulting gene models were integrated using EvidenceModeler (Haas et al., 2008). Weights for each type of evidence were set as follows: PASA-T-set > Homology-set > Cufflinks-set > Augustus > SNAP = GlimmerHMM. The gene models were further updated by PASA2 to generate untranslated regions and alternative splicing variation information.

Three prediction methods (homology-based, transcriptome-based, and ab initio) were used to annotate the *A. jamaicensis* genome, which identified 22,079 protein-coding genes, with a mean of 8.15 exons per gene. For the *S. hondurensis* genome, we only used two methods (homology-based and ab initio prediction) due to the absence of RNA-seq data and genetic material for RNA sequencing, and identified 20,813 protein-coding genes, with a mean of 7.88 exons per gene. Approximately 90.46% (*A. jamaicensis*) and 87.06% (*S. hondurensis*) of these genes were functionally annotated to gene function databases.

Phylogenetic analysis and species divergence time estimation

There was a total of 15 published Chiroptera genomes in NCBI when we started this project (August 7, 2018). After excluding low-quality genomes (N50 of contigs < 20kb), we selected one representative species (with the longest contig N50) for each genus. In addition to the two neotropical fruit bats sequenced in this study, eight additional bat species and three outgroup species (horse: GCF_000002305.2, mouse: GCF_000001635.26, human: GCF_000001405.38) with published genomes were selected to identify orthologs. We retained the longest transcripts for each gene and filtered out genes with less than 50 amino acids. For each transcript, the open reading frame (ORF) was checked by homologous protein sequences from a non-redundant (nr) protein database. All filtered protein sequences of the 13 mammals were clustered into orthologous groups using OrthoMCL (v2.0.9) with the default parameters (Li et al., 2003). A total of 6,332 single-copy orthologs were retrieved for phylogenetic tree construction. First, multiple
sequence alignments for each single-copy orthologous gene were generated using MUSCLE, with the default parameters (Edgar, 2004). Next, the alignments of each gene were concatenated to a super alignment matrix. We then constructed a phylogenetic tree under the maximum likelihood framework with the package RaxML with 1,000 bootstrap replicates (Stamatakis, 2014), using the best-fitting substitution model “GTR+GAMMA” which was determined by jModelTest2 according to the Bayesian information criterion (Darriba et al., 2012). Divergence times between species were estimated based on the concatenated alignments of fourfold degenerate sites from all the 6,332 single-copy orthologs using MCMCtree in PAML (Yang, 1997) with the “independent rates” option and the best-fitting substitution model “GTR+G” which was determined by jModelTest2. A Markov chain Monte Carlo analysis was run for 20,000 generations, using a burn-in of 10,000 iterations. There were four fossil constraints incorporated in the analyses: i) Divergence time for human and mouse, which is about 61.5–100.5 MYA; ii) Divergence time for human and horse, which is about 95.3–113 MYA; iii) Divergence time between the common vampire bat and the two neotropical fruit bats, the maximum of which is 34 MYA; iv) Divergence time for *Rhinolophus sinicus* and *Hipposideros armiger*, which is about 37–55 MYA (Benton & Donoghue, 2007; Teeling et al., 2005). Additionally, a mean prior of 65 MYA for the base of Chiroptera was also incorporated (Supporting Information Figure S1).

Identification of Tas2r and OR genes

We identified *OR* and *Tas2r* genes from each of the ten bats based on homology searches using published full-length *Tas2r* and *OR* gene sequences of other vertebrates as queries. This method was described in detail in an earlier study (Wang & Zhao, 2015). All confirmed *OR* and *Tas2r* genes were classified into three categories: intact genes (at least 270 codons, with an intact ORF and a complete coding region), partial genes (at least 100 codons, with an intact but truncated ORF due to incomplete genome sequencing), and pseudogenes (at least 300 nucleotides, with a disrupted ORF interrupted by nonsense or frame-shifting mutations). For both *OR* and *Tas2r* genes, all intact genes and all partial genes longer than 700 nucleotides were considered to be putatively functional. Subsequently, all putatively functional *OR* genes were assigned to...
subfamilies using OR family Assigner, ORA (v1.9) (Hayden et al., 2010). In addition, aiming to validate our gene identification approach, we also identified all the \textit{OR} and \textit{Tas2r} genes in other 13 newly released genomes (N50 of contigs > 20kb), including frugivorous bats, partially frugivorous bats, and non-frugivorous bats, as of March 14, 2020 (Supporting Information Table S2).

\textbf{Phylogenetic analysis of \textit{Tas2r} genes}

Coding sequences of 174 putatively functional \textit{Tas2r} genes from the 10 bat species, as well as a mouse \textit{V1R} gene sequence were aligned and manually checked using MUSCLE (Edgar, 2004). Next, we employed jModelTest2 to determine the best-fitting substitution model according to the Bayesian information criterion (Darriba et al., 2012). Finally, we used the resulting alignment to reconstruct a Bayesian Inference (BI) phylogenetic tree using the default parameters in MrBayes (version 3.1.2), with 5 million generations (Yang & Rannala, 1997). A Bayesian Inference (BI) phylogenetic tree of 472 putatively functional \textit{Tas2r} genes from the 10 bat genomes, and 13 additional bat genomes was also conducted using the same method.

\textbf{Phylogenetic principal component analysis}

Phylogenetic principal component analysis (PCA) was conducted using \textit{phyl.pca} from the \textit{phytools} R package v0.6-60 (Revell, 2012). The resulting tree (Supporting Information Figure S1) was used with normalized \textit{OR} gene frequencies of subfamilies as the input for the phylogenetic PCA. Of note, normalized \textit{OR} gene frequencies of subfamilies are the ratios of the putatively functional \textit{OR} gene numbers in each subfamily to the putatively functional \textit{OR} gene numbers in one species multiplied by 100 (Hayden et al., 2014). For the 13 additional bat species, phylogenetic relationships and branch lengths were taken from a previous study (Teeling et al., 2005) and the TimeTree database (http://www.timetree.org/). The PCA algorithm was based on the covariance matrix of the data. PC1 and PC2 of functional \textit{OR} gene frequencies in fruit bats and non-frugivorous bats were compared across all examined bats while accounting for phylogeny. Phylogenetic generalized least-squares (PGLS) analyses based on the phylogeny described earlier
were conducted using the PGLS component of the \textit{caper} (v1.0.1) R package (Orme et al., 2013). The p-value for each comparison of PCs was generated from t-test, and the Benjamini–Hochberg method was used to correct for multiple testing.

Identification of genes involved in digestion and metabolism

First, we downloaded five full-length protein sequences of CHIAs in \textit{Tarsius syrichta} from a published study (Emerling et al., 2018). We also downloaded from NCBI one representative full-length gene sequence in \textit{Homo sapiens} for each of the remaining digestive or metabolic genes in this study. Second, we conducted a homology search using the downloaded protein sequences as queries for each gene, using the default parameters in the genBlastG program (v1.0.138) (She et al., 2009). For each genomic region that had blast hits, we only retained the genomic sequence of the longest hit and its flanking 1-kb regions in both directions. Third, the retrieved genomic sequences were annotated by genewise (wise2-4-1) using the respective query sequence for each gene as a reference (Birney et al., 2004). Finally, we used the resulting coding sequences (CDS) to search against the non-redundant (nr) protein database based on BLASTX (Altschul et al., 1990). Only CDSs with the best hits of genes of interest were retained for subsequent analysis. In addition, alignments of each retrieved gene were checked manually, and CHIA genes were identified based on phylogenetic and synteny analyses.

Identification of genes with convergent amino acid substitutions

Here, convergent sites refer to both previously defined “parallel” and “convergent” sites (Zhang & Kumar, 1997). Based on the phylogenetic tree shown in Supporting Information Figure S2, amino acid sequences at each node for all the 6,332 single-copy orthologs were deduced under the “aaml” model using CODEML in PAML (Yang, 1997). In this study, convergent amino acid sites between the two divergent lineages of fruit bats are defined as parallel or convergent changes that have resulted in the same amino acids at the respective ancestral nodes of the two Old World fruit bats and the two neotropical fruit bats. Specifically, convergent amino acid sites must meet the following criteria: i) $O_1 = N_1$; ii) $O_1 \neq O_2$; iii) $N_1 \neq N_2$, where $O_1, O_2,$
RESULTS

Genome sequencing of two bats and phylogenetic tree reconstruction

To enable genomic comparisons between Old World and neotropical fruit bats, we sequenced the genomes of two neotropical fruit bats: the Jamaican fruit-eating bat (*Artibeus jamaicensis*) and the yellow-shouldered bat (*Sturnira hondurensis*), which are analyzed as biological replicates in this study. A total of 201.74-fold coverage for *A. jamaicensis* and 158.77-fold coverage for *S. hondurensis* data were generated (Supporting Information Table S1). Finally, 2.22 Gb (*A. jamaicensis*) and 2.11 Gb (*S. hondurensis*) genome assemblies were generated. The contig and scaffold N50 values for *A. jamaicensis* were 41.70 kb and 2.56 Mb, in order, and 99.90 kb and 10.02 Mb for *S. hondurensis* (Table 1). Both genomes displayed a relatively high level of heterozygosity – 0.573% for *A. jamaicensis* and 0.416% for *S. hondurensis* (Supporting Information Table S3).

To assess the completeness of the two genomes, we performed Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis by searching against the mammalian BUSCO gene groups (version 3.0) (Simao et al., 2015). Overall, more than 91.8% (*A. jamaicensis*) and 91.5% (*S. hondurensis*) complete sequences of the 4,104 mammalian BUSCOs were identified in the genomes (Table 1 and Supporting Information Table S4). We also used the core eukaryotic genes mapping approach (CEGMA) pipeline to evaluate the completeness (Parra et al., 2007). This approach identified 98.79% (*A. jamaicensis*) and 95.56% (*S. hondurensis*) of the 248
complete core eukaryotic genes (CEGs) for the two genome assemblies (Table 1). Finally, a total of 22,079 (A. jamaicensis) and 20,813 (S. hondurensis) protein-coding genes were annotated for the genomes (Table 1).

For comparative genomics, we obtained a dataset consisting of 13 species that represent diverse lineages of bats with a variety of diets and three outgroup species (horse, mouse and human), including two Old World fruit bats (Pteropus alecto, Rousettus aegyptiacus), two neotropical fruit bats (A. jamaicensis, S. hondurensis), one horseshoe bat (Rhinolophus sinicus), one roundleaf bat (Hipposideros armiger), one vampire bat (Desmodus rotundus), one long-fingered bat (Miniopterus natalensis), and two vesper bats (Eptesicus fuscus, Myotis lucifugus) (Figure 1 and Supporting Information Table S2). While the two neotropical fruit bats were newly sequenced in this study, the genome sequences for other bat species were previously published (Teeling et al., 2018). We also assessed the eight published bat genomes used in this study by mammalian BUSCO gene groups, and the result showed that more than 91% complete sequences were identified in all bat genomes (Supporting Information Table S4). We used these data to reconstruct a phylogenetic tree with the maximum likelihood method based on the concatenated alignment of 6,332 single-copy orthologs from the 10 bat and three outgroup species (human, mouse, and horse) (Figure 1). The bootstrap values of all nodes are 100% and the topology agrees with that from earlier studies (Figure 1) (Miller-Butterworth et al., 2007; Teeling et al., 2005). To minimize systematic errors such as saturation in substitutions and bias in base frequencies (Davalos & Perkins, 2008), we repeated the phylogenetic analysis using the same method based on the concatenated alignment of single-copy orthologs with third-codon positions removed, which resulted in an identical phylogenetic tree with all nodes receiving 100% bootstrap support.

Evolution of sensory genes linked to frugivory

To investigate how dietary changes shaped the evolution of sensory genes in the two lineages of frugivorous bats, we characterized olfactory receptor and bitter taste receptor gene repertoires from the 10 bat genomes (Figure 1). Using published intact OR gene sequences from
human, rat, macaque, cow, dog, platypus, and opossum as queries, we identified all OR genes in
the whole-genome assemblies of the 10 bat species. A total of 7,209 OR genes were retrieved from
the 10 bat genomes, with a range of 261 to 635 putatively functional (all intact genes and all
partial genes with the length longer than 700 bp) OR genes for each species (Supporting
Information Table S5). All identified OR genes are provided in Supporting Information
Dataset S1 (Dryad doi: 10.5061/dryad.vt4b8gtpn). Next, all putatively functional OR genes were
assigned to 13 subfamilies (Supporting Information Table S6), as suggested by phylogenetic
analyses in a previous study (Hayden et al., 2010).

To compare OR gene subfamily distribution patterns between frugivorous and
non-frugivorous bats, we conducted phylogenetic principal component analysis (PCA) based on
the species tree of the 10 bats (Figure 1 and Supporting Information Figure S1). To minimize
the impact of different genome quality, we did not use the absolute OR gene numbers for each
subfamily, but instead used the OR gene frequencies (i.e. the ratios of the putatively functional OR
gene numbers in each subfamily to the putatively functional OR gene numbers in one species) as
input in phylogenetic PCA (Supporting Information Table S7). The first two principal
components (PCs) explained 54.04% and 28.82% of the variance in OR subfamily gene number
frequencies, respectively (Figure 2A). This analysis showed that the gene frequencies of OR
subfamilies in frugivorous bats were significantly different from those in their non-frugivorous
relatives (FDR adjusted P-value of PC1=0.33, t-value=-1.25, df=8; FDR adjusted P-value of
PC2=0.03, t-value=-0.76, df=10) (Supporting Information Table S8).

To test the influence of different genome assembly methods and parameters, we identified
all OR genes from other versions of genome assemblies for the same two fruit bat species
(RouAeg_v1_BIUU for R. aegyptiacus and ArtJam_v1_BIUU for A. jamaicensis) available in the
National Center for Biotechnology Information (NCBI) database (Supporting Information Table
S2). After adding the data from the two additional genome assemblies (RoaegV2 and ArjamV2),
we repeated the phylogenetic PCA based on the OR gene frequencies (Figure 2B). The repeated
analysis showed the two additional assemblies of fruit bat species were closely clustered with
other fruit bat species (Figure 2B), and the PCs of OR subfamily gene frequencies between

This article is protected by copyright. All rights reserved
frugivorous and non-frugivorous bats remain significantly different (FDR adjusted P-value of PC1<0.001, t-value=-6.08, df=10; FDR adjusted P-value of PC2=0.53, t-value=-0.76, df=10) (Supporting Information Table S8), suggesting that the influence of different genome assembly methods and parameters is minimal in the analysis. Both PCA analyses showed that the first two PCs explained the majority of the variance (>80%) in OR gene frequency for each subfamily, indicating that the subfamilies OR4, OR5/8/9 and OR2/13 may be linked to frugivory in bats (Figure 2A and Figure 2B). To test the validity of our method, we repeated the PCA using their data and obtained a generally identical result compared to a previous study which used a set of degenerate primers to amplify OR sequences using PCR (Hayden et al., 2014) (Supporting Information Figure S3A). Furthermore, we conducted an additional PCA using the combined data of functional OR gene frequencies of each subfamily from this and that study (Hayden et al., 2014) (Supporting Information Figure S3B), and identified a significant difference among PCs of OR subfamily gene frequencies between the previous (based on PCR) and our data (based on whole-genome sequences) (FDR adjusted P-value of PC1=0.002, t-value=3.76, df=35; FDR adjusted P-value of PC2=0.05, t-value=-2.20, df=35) (Supporting Information Table S8), indicating that different methods of OR sequence sampling may influence the result.

To add more data points for further validation of our analysis, we additionally identified all the OR genes in 13 recently published genomes of frugivorous and non-frugivorous bats, phylogenetic PCA analyses based on functional OR gene frequencies of all the 23 bat genomes were repeated. Results also showed that the subfamilies OR4, OR5/8/9 and OR2/13 are likely linked to frugivory in bats (FDR adjusted P-value of PC1=0.04, t-value=-2.18, df=21; FDR adjusted P-value of PC2=0.67, t-value=-0.43, df=21) (Supporting Information Figure S4 and Table S8). Unexpectedly, the clustering of two non-frugivorous bat species (Craseonycteris thonglongyai and Megaderma lyra) also showed increases in subfamilies OR4, OR5/8/9 and OR2/13 (Supporting Information Figure S4).

Owing to the conservation of Tas1r1 genes in bats (Zhao et al., 2010), we only identified all Tas2r genes in the 10 bat genomes based on a homology search using published full-length Tas2r proteins from human, mouse, chicken, zebrafish, lizard, and frog as queries. In total, we
retrieved 8–29 intact genes, 0–4 partial genes, and 6–15 pseudogenes from the 10 bat genomes (Supporting Information Table S9 and Dataset S2, Dryad doi: 10.5061/dryad.vt4b8gtpn).

Notably, the common vampire bat (D. rotundus) was found to possess only eight putatively functional (intact and partial) Tas2r genes, which is much fewer than in other bats (Supporting Information Table S9).

Compared to the vampire bat, which has only eight putatively functional Tas2r genes, we found that the repertoires of putatively functional Tas2r genes were larger in both the insectivorous and frugivorous bats examined, with 17–30 and 14–18 genes detected, respectively (Supporting Information Table S9). Furthermore, we reconstructed a gene tree with the Bayesian approach based on an alignment of all the putatively functional gene sequences from the 10 bats, using the mouse V1r1 gene (GenBank: NM_001166728) as the outgroup. The tree showed that Tas2r genes were generally clustered into 18 clades, and the nomenclature was followed as proposed in previous studies (Hayakawa et al., 2014; Jiao et al., 2018) (Figure 2C and Supporting Information Figure S5). Almost all of these clades contained Tas2r genes from both insectivorous and frugivorous bats, but four clades did not. With one exception, three clades (Tas2r11, Tas2r18, and Tas2r67) contained genes from at least four of the five insectivorous bats, but none from frugivorous bats (Figure 2C). The only exception is Tas2r40, which includes seven genes from frugivorous bats and one gene from the sanguivorous bat (Figure 2C). In addition, we also reconstructed a Bayesian gene tree using the same method based on all the 472 putatively functional Tas2r genes from the 10 and additional 13 recently published bat genomes (Supporting Information Figure S6). Tas2r genes of obligate frugivorous bats were also absent in the three clades (Tas2r11, Tas2r18, and Tas2r67) (Supporting Information Figure S6).

Loss of digestive enzymes in two lineages of fruit bats

To ascertain whether any digestive enzyme genes are specifically lost in both Old World and neotropical fruit bats, we examined the whole-genome assemblies of the 10 bats and two partially frugivorous phyllostomids (T. saurophila with about 10% of fruit/nectar in its diet and P. discolor with a 70% fraction but recently diverged from its animalivorous ancestor) to identify
digestive enzymes (Figure 3). There were 16 digestive enzyme genes that have been well characterized in previous studies, including carboxydrases, proteases, lipases or esterases, chitinases, and lysozymes (Chen & Zhao, 2019; Karasov et al., 2011). Intriguingly, we found that acidic mammalian chitinase (CHIA; Enzyme Commission number: 3.2.1.14) and progastricsin (PGC; Enzyme Commission number: 3.4.23.3) were lost in both lineages of Old World and neotropical fruit bats, but not in insectivorous bats or partially frugivorous bats (Figure 3).

CHIA is expressed in the mammalian gastrointestinal tract and participates in degrading chitin from insects (Strobel et al., 2013). There are five paralogs of CHIA in mammals, which were inherited from the last common ancestor of placental mammals (Emerling et al., 2018). It has been hypothesized that adaptation to non-insectivorous diets would lead to their loss (Jeuniaux, 1971). Indeed, all CHIA genes were lost in Old World fruit bats, but not in insectivorous bats (Emerling et al., 2018). Here, we take advantage of the two newly sequenced genomes to investigate whether there was a convergent loss of CHIA genes in neotropical fruit bats. Our results showed that there were one to five copies of CHIAs in each of the 12 bat species (Supporting Information Dataset S3). Only genes that met the following two criteria were considered to be putatively functional: i) an intact open reading frame without premature stop codons or frameshift mutations, and ii) the presence of a canonical catalytic domain (DXXDXDXE) (Olland et al., 2009). For instance, the CHIA5 of H. armiger is considered to be non-functional due to an absence of the canonical catalytic domain, although its open reading frame (ORF) is intact. The results showed that all insectivores and partially frugivorous bats possess 2–3 putatively functional CHIA genes, and the remaining CHIAs are pseudogenes or absent from the genomes. In contrast, all CHIAs retrieved from obligate frugivorous bats and the common vampire bat are pseudogenes (Figure 3A).

Gastricsin (or pepsinogen C), encoded by the progastricsin (PGC) gene, is an enzyme present in the gastric juice of most vertebrates, and is responsible for degrading dietary proteins in the stomach (Taggart et al., 1989). In the 12 bat genome sequences, we found 1–2 copies of PGCs (Supporting Information Dataset S3). At least one putatively functional PGC was retrieved from all non-frugivorous bats except M. lucifugus, whereas all PGCs of obligate frugivorous bats
were pseudogenized. Notably, there is a premature stop codon in the \textit{PGC} shared by the two neotropical fruit bat species (Figure 3B), indicating that the common ancestor of these two species had already lost \textit{PGC}s. Since it was unexpected to find a single 1-bp deletion in the ORF of the \textit{M. lucifugus} \textit{PGC} gene, we examined the homologous genomic region of two additional \textit{Myotis} species with relatively high-quality genomes (\textit{M. brandtii} and \textit{M. david}). However, we did not find any deletions in either species (Supporting Information Dataset S3). Thus, the 1-bp frameshift deletion of the \textit{M. lucifugus} \textit{PGC} is likely to be an artifact of sequencing, or an isolated case in \textit{M. lucifugus}, uncommon in non-frugivorous bats. All \textit{PGC}s were lost in both lineages of obligate frugivorous bats, probably due to selection relaxing as their ancestral diet shifted to less proteins.

All the pseudogenes of \textit{CHIA} and \textit{PGC} from obligate frugivorous bats contain two or more nonsense or frame-shifting mutations except \textit{CHIA3} (only one frame-shifting mutation) and \textit{PGC1} (only one nonsense mutation) in \textit{S. hondurensis} (Supporting Information Dataset S3). In order to reduce the impact of assembly or sequencing errors, the raw DNA sequencing reads were mapped to the genome sequence of \textit{S. hondurensis} by SAMtools (Li, 2011). According to quality scores generated from SAMtools, we found that all the high-quality reads supported the frame-shifting mutation of \textit{CHIA3} and the nonsense mutation of \textit{PGC1} in \textit{S. hondurensis}. This analysis indicates that pseudogenization events of the \textit{CHIA} and \textit{PGC} genes in frugivorous bats are not likely the result of assembly or sequencing errors.

Convergence of metabolic genes between two lineages of fruit bats

To identify convergent amino acid substitutions between the common ancestor of the two Old World fruit bats and the common ancestor of the two neotropical fruit bats, we analyzed the 6,332 single-copy orthologous protein-coding genes of the 10 bat species using a published method for detecting convergent and parallel evolution (Zhang & Kumar, 1997). We identified 878 genes that contain at least one convergent amino acid substitution, and then discarded those without convergent substitutions that are potentially “deleterious/functionally important” (Provean score \(\leq -1.3\)). Thus, a total of 305 genes were retained. To reduce the impact of neutral evolution, we compared the observed number of convergent substitutions with the random expectation for

This article is protected by copyright. All rights reserved
each gene under the JTT-f_{gene} amino acid substitution models (Zou & Zhang, 2015). Only genes with a significantly greater number of observed convergent substitutions were considered to be truly under convergent evolution (Benjamini-Hochberg FDR adjusted $P<0.05$) (Thomas & Hahn, 2015). A total of 36 candidate genes were retained (Supporting Information Table S10). In addition, we used the PCOC method to predict posterior probabilities of convergent evolution for each convergent site in the 36 candidate genes under the “PCOC” model (Rey et al., 2018), which defines convergent shifts according to amino acid preferences but not convergent substitutions to the exact same amino acids. For the 107 convergent substitutions in these 36 genes, 99% substitutions (106/107) had a posterior probability above 0.95, and 91% substitutions (97/107) obtained a posterior probability greater than 0.99 (Supporting Information Table S11). To remove false positives, candidate genes containing one or more convergent substitutions with a posterior probability lower than 0.99 were discarded. Finally, we obtained 29 genes that are putatively under convergent evolution between the two lineages of frugivorous bats.

Among these convergent genes, we found several metabolic genes that may be specifically linked to frugivory, including GPR107, PASK, BAIAP3, MAGED2 and SCNN1A (Figure 4A). The posterior probabilities under the PCOC model for all the 14 convergent sites from the five metabolic genes were above 0.99 (Supporting Information Table S11). Notably, all the 14 convergent substitutions are specific to the four frugivorous species, and seven of the 14 sites are conserved in non-frugivorous bats (Supporting Information Table S12). GPR107 is a G protein-coupled receptor and was proposed to be a receptor for neuronostatin (NST), a peptide produced from the somatostatin preprohormone (Yosten et al., 2012). Colocalization of GPR107 and NST on pancreatic α-cells has been demonstrated in mouse and human, and interaction of GPR107 and NST may be involved in blood sugar regulation in response to low glucose by stimulating glucagon release (Elrick et al., 2016), which would help maintain glucose homeostasis when frugivorous bats are fasting (Protzek & Pinheiro, 2011b). PASK (PAS kinase) is a member of the nutrient-regulated family of protein kinases, which may be involved in carbohydrate metabolism by regulating glucose-stimulated insulin production in mammalian pancreas and glucagon secretion (An et al., 2006; Wilson et al., 2005; Xavier et al., 2011). Brain-specific
angiogenesis inhibitor I-associated protein 3 (BAIAP3), a C2 domain-containing Munc13 protein, functions in the process of endosome-to-Golgi retrograde transport, and the cellular content of insulin and prohormone convertase 2 was reduced dramatically in pancreatic β cell lines with BAIAP3 knockdown (Zhang et al., 2017). Moreover, BAIAP3 was suggested to play a role in regulating behavior and food intake in human and mouse by controlling calcium-stimulated exocytosis of hormones such as insulin and other neurotransmitters (Lauridsen et al., 2011; Mariman et al., 2015; Wojcik et al., 2013). In addition, MAGED2 encodes the protein melanoma-associated antigen D2, which is involved in salt reabsorption by affecting the expression and function of two cotransporters of sodium chloride (NKCC2 and NCC), two key components in the distal renal tubule for salt reabsorption (Laghmani et al., 2016). SCNNIA encodes the α-subunit of epithelial sodium channel (ENaC), which is essential for electrolyte and blood pressure homeostasis by regulating the reabsorption of sodium in kidney, lung, colon, and eccrine sweat glands (Hobbs et al., 2013; Salih et al., 2017; Voilley et al., 1994).

It should be noted that a previous study has hypothesized that losses of genes involved in metabolic pathways may have contributed to adaptations to a frugivorous diet in Old World fruit bats (Sharma et al., 2018). For example, genes involved in insulin metabolism and signaling (FFAR3 and FAM3B), renal transporter (SLC22A12, SLC2A9, and SLC22A6), and renal ammonium secreting transporter (RHBG) may be relevant in the dietary transition. Here, we tested those hypotheses by examining the same genes, with the aim of identifying convergent gene losses in neotropical fruit bats. Our results showed that the FFAR3 gene was pseudogenized in both lineages of obligate frugivorous bats (Figure 4B and Supporting Information Dataset S3), but remained putatively functional in non-frugivorous bats and partially frugivorous bats examined in this study. As FFAR3 was suggested to inhibit glucose stimulated insulin secretion, the loss of this gene may help fruit bats to secrete more insulin for glucose digestion (Sharma et al., 2018). However, FAM3B was pseudogenized only in P. alecto, and there were no nonsense or frame-shifting mutations found in the ORFs of the other three frugivorous bats in this study. In addition, although the four renal genes (SLC22A12, SLC2A9, SLC22A6, and RHBG) were all lost in the two Old World fruit bats, we found that all of these genes were complete and intact in the
DISCUSSION

In this study, we report two novel genome assemblies of neotropical fruit bats (the Jamaican fruit-eating bat, *Artibeus jamaicensis*, and the yellow-shouldered bat, *Sturnira hondurensis*), which together provide a framework for comparative studies with Old World fruit bats. While we did not generate chromosome-level genomes such as those of six newly sequenced bat genomes (Jebb et al., 2019), BUSCO assessments showed that our newly sequenced bat genomes are comparable to previously published ones (Supporting Information Table S4). Comparative genomics of 10 bat species with diverse diets across the phylogeny revealed a number of convergent genomic signatures of obligate frugivory, including genes involved in sensory perception, digestion, and metabolism. Using the classic model of independently evolved obligate frugivory in Old World and neotropical fruit bats, we explored molecular adaptations contributing to convergent evolution of obligate frugivory.

Because olfactory receptor protein diversity determines the range of molecular ligands that can be recognized (Malnic et al., 1999), *OR* gene repertoires play a central role in the recognition of volatile organic compounds such as those emitted by ripe fruit. Behavioral studies have shown that olfaction could help bats locate fruits (Kalko & Condon, 1998), and morphological studies show remarkable differences in olfactory bulb size and olfactory epithelium thickness between frugivorous bats and non-frugivorous bats (Reep & Bhatnagar, 2000), but prior analyses of *OR* gene repertoires (Hayden et al., 2014) were potentially limited in their *OR* gene sampling (Yohe et al., 2020). To overcome the limitations of prior analyses, we instead analyzed the *OR* subgenome based on new and previously published genomes, identifying three subfamilies of olfactory receptor genes (*OR4*, *OR5/8/9* and *OR2/13*) with links to frugivory.

Our findings corroborate the links between *OR1/3/7* and *OR2/13* and frugivory (Hayden et al., 2014). However, the previous study, reliant on PCR, was based on representative but not comprehensive sampling of *OR* genes (Hayden et al., 2014). Indeed, Sanger-sequenced amplicons based on degenerate primers were able to retrieve less than 33% of *OR* genes from the common...
vampire bat genome (Yohe et al., 2020), thus OR gene data identified from whole-genome
sequences encompasses a less biased, more representative sample of OR gene diversity.

We also implemented a series of robustness checks to ensure shifts in gene family evolution
were not caused by assembly artefacts or within-population variation. OR gene number varies
across different genome assemblies or different individuals, even for the same species (Hasin et
al., 2008; Nozawa et al., 2007; Young et al., 2008). To minimize the impact of gene copy number
variants on our analyses, we: 1) did not use raw OR gene numbers, but instead used OR gene
frequencies for each subfamily, which could reduce the impact of different genome quality; 2)
identified all OR genes from other available versions of published genome assemblies for two fruit
bat species to test the influence of different genome assembly methods and parameters; and 3)
added 13 more data points to validate our results. Thus, our findings are unlikely to be the result of
artefacts and are instead linked to lineage-specific traits. However, the unexpected clustering of
two non-frugivorous bat species (C. thonglongyai and M. lyra) suggests the three subfamilies we
identify here OR4, OR5/8/9 and OR2/13 may have played roles unrelated to frugivory in some
non-frugivorous species, requiring further studies in the future.

We found three bitter taste receptor genes (Tas2r11, Tas2r18, and Tas2r67) were all lost in
obligate frugivorous bats. Intriguingly, there is one gene in the clade Tas2r67 from each of the
four partially frugivorous bats (T. saurophila, M. hirsuta, A. caudifer and P. discolor)
(Supporting Information Figure S6). These four species all include insects in their diets
(Supporting Information Table S2), the functional Tas2r67 may be required for them because of
their partially insectivorous diets. This finding suggests Tas2r11, Tas2r18, and Tas2r67 may be
critical for insectivorous bats but is no longer necessary for obligate frugivorous bats, possibly
because of dietary shifts from their insectivorous ancestors (Emerling et al., 2018; Jiao et al.,
2019). Indeed, bitter taste reception could help identify and avoid poisonous substances that
typically taste bitter, such as plant secondary metabolites and insect defensive secretions (John &
Hankins, 1975). A previous study examined two prevalent plant secondary metabolites (alkaloids
and cyanogenic glycosides) in wild fruits, and showed that of the 75 fruit species examined, only
two had a high concentration of alkaloids, and three contained cyanogenic glycosides (Bondjengo

This article is protected by copyright. All rights reserved
et al., 2017). Hence, due to the low proportion of bitter-tasting substances in fruits, selection on the three Tas2r genes may have relaxed, and the genes were eventually lost in frugivorous bats. This finding agrees with the hypothesis that bitter substances in diet shaped the evolution of Tas2r gene repertoires in vertebrates (Li & Zhang, 2014; Wang & Zhao, 2015). Notably, the common vampire bat (D. rotundus) was found to possess only eight putatively functional (intact and partial) Tas2r genes, much fewer than among other bats (Supporting Information Table S9). This finding is consistent with the hypothesis that the narrow diet of vampire bats resulted in their inferior bitter taste reception (Hong & Zhao, 2014).

Digestive enzymes play important roles in breaking down nutrients for energy production (Luca et al., 2010), thus evolutionary patterns of digestive enzymes may be distinct in mammals with different diets. We found that losses of digestive enzyme genes (CHIA and PGC) in the obligate frugivorous bats from both the Old and neotropical lineages. A recent study examining the genome data of 107 extant placental mammals showed both a positive correlation between the number of functional CHIA and the percentage of invertebrates in diet, and all CHIA genes were lost in Old World fruit bats (Emerling et al., 2018). In this study, we found all CHIA genes were also lost in neotropical obligate frugivorous bats and the common vampire bat, supporting the hypothesis that CHIA genes are lost as animals shift to non-insectivorous dietary niches (Emerling et al., 2018). In addition to CHIA and PGC, another digestive enzyme gene, encoding trehalase, has been inactivated or pseudogenized in noninsectivorous bats (Jiao et al., 2019). In contrast to gene losses, a previous study showed that activities of intestinal sucrase and maltase have been increased during the dietary shift from insectivory to nectarivory or frugivory in bats of family Phyllostomidae (Schondube et al., 2001). In birds, diets shaped the evolution of digestive enzymes in forms of gene loss and duplication, functional divergence and positive selection (Chen & Zhao, 2019). Thus, molecular adaptations of digestive enzymes to different diets can be found in different evolutionary patterns.

Frugivorous bats are able to catabolize exogenous sugars directly and fuel their metabolism rapidly (Amitai et al., 2010), molecular adaptations to carbohydrate metabolism are thus expected. For example, the frugivorous bat Artibeus lituratus exhibits high insulin sensitivity and elevated
glucose tolerance, and is able to maintain normoglycemia after several days of starvation (Protzek & Pinheiro, 2011a). In this study, convergent amino acid substitutions in the two lineages of fruit bats were identified in several genes involved in carbohydrate metabolism, such as GPR107, PASK and BAIAP3. GPR107 is involved in blood sugar regulation in response to low glucose (Elrick et al., 2016), while PASK and BAIAP3 were suggested to regulate insulin production (An et al., 2006; Wilson et al., 2005; Xavier et al., 2011; Zhang et al., 2017). These genes related to carbohydrate metabolism may have contributed to adaptation to rapid and efficient digestion of sugars for frugivorous bats. In addition, we found two renal genes (MAGED2 and SCNN1A) involved in salt reabsorption have undergone convergent evolution. Indeed, a previous study showed adaptations of renal functions along with dietary shifts from insectivorous to frugivory or nectarivory in bats, because frugivores and nectarivores show reduced relative medullary thickness of kidneys, a putative indicator for estimating the ability to produce concentrated urine (Schondube et al., 2001). Although our analyses provided evidence for convergent evolution in all five genes, our conclusions are mainly based on bioinformatic inference. Future experimental assays can validate the functional changes of these convergent amino acid substitutions. In addition, five metabolic genes assumed to be associated with herbivory (FAM3B, SLC22A12, SLC2A9, SLC22A6, and RHBG) – previously found to be lost in Old World fruit bats – remained complete and intact in neotropical fruit bats. This last finding suggests the two lineages of fruit bats might use different mechanisms to cope with similar metabolic challenges.

In conclusion, our genome-wide analyses of molecular evolution have revealed several convergent molecular signatures underlying evolutionary adaptations to obligate frugivory in two distantly related lineages of frugivorous bats. We identified three subfamilies of olfactory receptor genes, losses of three bitter taste receptor genes, losses of two digestive enzyme genes, and convergent amino acid substitutions in several metabolic genes that may have linked to frugivory. Future in-depth functional research of convergent amino acid substitutions identified in this study are needed for a better understanding of metabolic adaptations to obligate frugivory. Our study provides an excellent model to explore the molecular adaptations contributing to convergent evolution of obligate frugivory in mammals.
Table 1. Summary of the genome assemblies for *A. jamaicensis* and *S. hondurensis* newly generated in this study.

<table>
<thead>
<tr>
<th>Genomic features</th>
<th>A. jamaicensis</th>
<th>S. hondurensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembled genome size (Gb)</td>
<td>2.22</td>
<td>2.11</td>
</tr>
<tr>
<td>Contig N50 (Kb)</td>
<td>41.7</td>
<td>99.9</td>
</tr>
<tr>
<td>Scaffold N50 (Mb)</td>
<td>2.56</td>
<td>10.02</td>
</tr>
<tr>
<td>GC content (%)</td>
<td>41.92</td>
<td>42.3</td>
</tr>
<tr>
<td>Repeat rate (%)</td>
<td>28.06</td>
<td>32.69</td>
</tr>
<tr>
<td>Predicted protein-coding genes</td>
<td>22,079</td>
<td>20,813</td>
</tr>
<tr>
<td>Average gene length (bp)</td>
<td>29,436.16</td>
<td>22,882.57</td>
</tr>
<tr>
<td>Average CDS length (bp)</td>
<td>1,445.98</td>
<td>1,572.26</td>
</tr>
<tr>
<td>Average exon number per gene</td>
<td>8.15</td>
<td>7.88</td>
</tr>
<tr>
<td>Percentage of 4104 mammalian BUSCOs (%)</td>
<td>91.8</td>
<td>91.5</td>
</tr>
<tr>
<td>Percentage of 248 ultra-conserved CEGs (%)</td>
<td>98.79</td>
<td>95.56</td>
</tr>
</tbody>
</table>
REFERENCES

Adey, A., Kitzman, J. O., Burton, J. N., Daza, R., Kumar, A., Christiansen, L., Ronaghi, M., Amini, S., Gunderson, K. L.,

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

doi:https://doi.org/10.1073/pnas.1613870114

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

Acknowledgments:

This article is protected by copyright. All rights reserved.
We are grateful to D.H. Zou, H. Jiao, J.M. Xia, and Q. Wang for technical assistance and valuable comments. We thank R.A. Saldaña-Vázquez and G. Vázquez-Domínguez for their help in collecting the samples.

Funding: This work was supported by the National Natural Science Foundation of China (31722051 and 31672272). L.M.D. was supported, in part by United States National Science Foundation awards DEB 1442142 and 1456455.

Author contributions: H.Z. conceived the study, K.W., S.T., Y.Z., and H.Z. collected and analyzed the data, H.Z., K.W. and S.T. wrote the manuscript, J.G-G provided the samples and revised the manuscript, L.M.D. commented and revised the manuscript.

Competing interests: The authors declare that they have no competing interests.

Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supporting Information Materials. Dataset S1 and Dataset S2 are available on Dryad (https://doi.org/10.5061/dryad.vt4b8gtpn). Additional data related to this paper may be requested from the authors. *A. jamaicensis* and *S. hondurensis* genomes have been deposited at GenBank under the accession nos. VSFN00000000 and VSFL00000000. Short-read data have been deposited into the Short Read Archive under accession nos. PRJNA554589 and PRJNA554734. The whole genome sequence data of *A. jamaicensis* and *S. hondurensis* have also been deposited in the Genome Warehouse in BIG Data Center, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, under accession nos. GWHAAYX00000000 and GWHAAZA00000000 that are publicly accessible at http://bigd.big.ac.cn/gwh. Short-read data have also been deposited into the Genome Sequence Archive in BIG Data Center under accession nos. CRA001876 and CRA001916.

FIGURE LEGENDS

Figure 1. Phylogenetic tree of the 10 bat species in this study. The tree was reconstructed using maximum-likelihood method under the GTR+GAMMA model based on the concatenated alignments of all the 6,332 single-copy orthologs. The bootstrap values of all nodes are 100%. Frugivorous bats are indicated by green circles, insectivorous bats were denoted by black diamonds and the red circle represents the sanguivorous bat. The two species with newly sequenced genomes are underlined. Branch length represents millions of years and is drawn to the

This article is protected by copyright. All rights reserved.
Figure 2. PCA analysis of OR gene frequencies of (A) 10 bat genomes and (B) 10 bat genomes and additional genome versions of two frugivorous bats, and (C) the Tas2r gene tree. (A) PCA analysis showing PC1 and PC2 for the 10 bat species. PCs were generated from the ratios of the putatively functional OR gene numbers in each subfamily to the putatively functional OR gene numbers in one species. Bats of different diet types are marked with various colors: frugivorous (red circle), insectivorous (black circle) and sanguivorous (hollow circle). (B) PCA analysis showing PC1 and PC2 for the 10 bat species and two additional frugivorous species (RoaegV2 and ArjamV2). (C) Evolutionary relationships of all 174 functional Tas2r genes from the 10 bats. The tree was reconstructed using the Bayesian approach under the GTR+I+G model. Branch lengths are drawn to the scale. Note that Tas2r11, Tas2r18, and Tas2r67 are specifically lost in obligate frugivorous bats. Abbreviations: Arjam, Artibeus jamaicensis; Sthon, Sturnira hondurensis; Derot, Desmodus rotundus; Ptale, Pteropus alecto; Roaeg, Rousettus aegyptiacus; Hiarm, Hipposideros armiger; Rhsin, Rhinolophus sinicus; Minat, Miniopterus natalensis; Epfus, Eptesicus fuscus; Myluc, Myotis lucifugus.

Figure 3. Convergent gene loss of digestive enzymes in Old World and neotropical fruit bats. (A) No putatively functional CHIA genes were found in New and Old World fruit bats, or in the common vampire bat (Desmodus rotundus). Species with different diet types are marked with different colors. Yellow arrows represent putatively functional CHIA genes, whereas gray arrows indicate non-functional genes. Double slashes indicate that genes were retrieved from different scaffolds. (B) Representative nonsense or frame-shifting mutations in the PGC genes from frugivorous bats.

Figure 4. Examples of metabolic genes showing signatures of convergent evolution. (A) Five genes with convergent substitutions were related to metabolism. (2) Examples of nonsense or frame-shifting mutations in the FFAR3 genes from the two lineages of frugivorous bats.
Bat diet
- Green: Frugivory
- Diamond: Insectivory
- Red: Sanguivory

Myotis lucifugus
Hipposideros armiger
Rhinolophus sinicus
Desmodus rotundus
Artibeus jamaicensis
Rousettus aegyptiacus
Pteropus alecto

Figure 1

Equus caballus
Homo sapiens
Mus musculus
Homo sapiens

Pteropodidae (Old World fruit bats)
Stenodermatinae (New World fruit bats)

Yinpterochiroptera
Yangochoiroptera

60 50 40 30 20 10 0 MYA
Figure 2
Figure 3

A

- **Putatively functional genes**
- **Pseudogenes**
- **Genes with intact ORFs but no catalytic domains**

Tarsius syrichta
- **Frugivores**
 - Pteropus alecto
 - Rousettus aegyptiacus
 - Hipposideros armiger
 - Rhinolophus sinicus
 - Desmodus rotundus
 - Artibeus jamaicensis
 - Sturnira hondurensis
 - Miniopterus natalensis
 - Eptesicus fuscus
 - Myotis lucifugus

B

Amino acids of Human

<table>
<thead>
<tr>
<th>38</th>
<th>V</th>
<th>101</th>
<th>S</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>G</td>
<td>L</td>
<td>L</td>
<td>G</td>
</tr>
<tr>
<td>AAGGGCGCTTGCTGGAG</td>
<td>GTGCCCCTCTGTCTAC</td>
<td>TCCACCTACTCCACC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. sapiens</td>
<td>A. jamaicensis</td>
<td>S. hondurensis</td>
<td>P. alecto</td>
<td>R. aegyptiacus</td>
</tr>
</tbody>
</table>
Figure 4

A

- **BAIAP3**
 - Regulate behavior and food intake

- **pancreas**
 - Blood sugar regulation

- **kidney**
 - Involved in salt reabsorption

- **MAGED2, SCNN1A**
 - Involved in carbohydrate metabolism

B

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AGTGTGGGCCCACCCCA</td>
<td>AGTGTGGGCTAGGCA</td>
<td>AGTATGGGC-TACCCCA</td>
<td>AGTGTGGCCCCCTACCTG</td>
<td>AGTGTGGCCCTACCTG</td>
<td>AGTGTGGCCCACCCG</td>
<td>AGCGTGGCCTACCTG</td>
<td>AGTGTCAGCCGCCTG</td>
<td>AGCGTGGCCTACCCG</td>
<td>AGCGTGGCCTACCTG</td>
<td>AGCGTGGCCTACCTG</td>
<td>AGCGTGGCCTACCTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGCTACAGCCGCCTG</td>
<td>TGCTACAGCTGCCCTG</td>
<td>TGCTACAGCCGCCTG</td>
<td></td>
</tr>
</tbody>
</table>