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Abstract 

Background Understanding the interactions between bat flies and host bats offer us fundamental insights into the 
coevolutionary and ecological processes in host-parasite relationships. Here, we investigated the identities, host speci-
ficity, and patterns of host association of bat flies in a subtropical region in East Asia, which is an understudied region 
for bat fly research.

Methods We used both morphological characteristics and DNA barcoding to identify the bat fly species found on 11 
cavernicolous bat species from five bat families inhabiting Hong Kong. We first determined the phylogenetic relation-
ships among bat fly species. Then, we elucidated the patterns of bat-bat fly associations and calculated the host speci-
ficity of each bat fly species. Furthermore, we assembled the mitogenomes of three bat fly species from two families 
(Nycteribiidae and Streblidae) to contribute to the limited bat fly genetic resources available.

Results We examined 641 individuals of bat flies and found 20 species, of which many appeared to be new to sci-
ence. Species of Nycteribiidae included five Nycteribia spp., three Penicillidia spp., two Phthiridium spp., one Basilia 
sp., and one species from a hitherto unknown genus, whereas Streblidae included Brachytarsina amboinensis, three 
Raymondia spp., and four additional Brachytarsina spp. Our bat-bat fly association network shows that certain closely 
related bat flies within Nycteribiidae and Streblidae only parasitized host bat species that are phylogenetically more 
closely related. For example, congenerics of Raymondia only parasitized hosts in Rhinolophus and Hipposideros, which 
are in two closely related families in Rhinolophoidea, but not other distantly related co-roosting species. A wide 
spectrum of host specificity of these bat fly species was also revealed, with some bat fly species being strictly monox-
enous, e.g. nycteribiid Nycteribia sp. A, Phthiridium sp. A, and streblid Raymondia sp. A, while streblid B. amboinensis is 
polyxenous.

Conclusions The bat fly diversity and specificity uncovered in this study have shed light on the complex bat-bat fly 
ecology in the region, but more bat-parasite association studies are still needed in East Asian regions like China as a 
huge number of unknown species likely exists. We highly recommend the use of DNA barcoding to support morpho-
logical identification to reveal accurate host-ectoparasite relationships for future studies.
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Background
Interactions between parasites and their hosts are one 
of the most striking coevolutionary arms races [1]. Both 
parasites and hosts exert selective pressures over each 
other, leading to reciprocal adaptations over time [2, 3]. 
Hippoboscoidea superfamily (Diptera) members  have 
evolved to become obligate parasites with adaptations 
for feeding on the blood of vertebrates. Members of Hip-
poboscoidea belong to one of four families, Glossinidae, 
Hippoboscidae, Nycteribiidae, and Streblidae [4], with 
the latter two being ectoparasites exclusively associated 
with bats (Chiroptera). Co-evolving with bats for more 
than 15 million years [5], bat flies are highly adapted to 
live on the fur and wing or tail membranes of bats; they 
are the most prevalent ectoparasites on bats worldwide. 
Some streblids develop fully functional wings after pupa-
tion and can fly to search for hosts, while others that pos-
sess rudimentary or no wings and nycteribiids, which are 
all wingless, can only rely on crawling behaviors to reach 
their hosts [4]. Approximately 230 species in 33 genera 
from Streblidae and 280 species in 11 genera from Nyc-
teribiidae have been recorded to date [6]. Nycteribiid 
and streblid species are not equally distributed among 
global regions [7, 8]. Nearly 70% of streblid species are 
distributed within the New World tropics or subtropics, 
and relatively few species occur exclusively in temperate 
zones, whereas about 80% of nycteribiid species occur in 
the Old World tropics or subtropics [4]. The most recent 
phylogenetic study showed that Nycteribiidae is mono-
phyletic but Streblidae is a paraphyletic group, which 
comprises the monophyletic New World clade and the 
paraphyletic Old World clade, which clusters with Nyc-
teribiidae [9]. The diversity of bat flies and their unique 
relationships with host bats make them an inviting model 
system for studying several ecological and evolution-
ary questions in the past decades, including systematics 
and biogeography, intra- or interspecific transmission of 
pathogens, and host-ectoparasite interaction dynamics 
[10].

Dynamics of bat-bat fly interactions are complex and 
influenced by the interplay of numerous biotic and abi-
otic variables. For example, roosting site preference and 
roosting behaviors of bats can affect the transmissibility 
of their bat flies. Bat populations roosting in permanent 
and protective structures (e.g. caves, water tunnels, and 
abandoned mines) were found to experience heavier 
bat fly parasitism than those more temporary roost-
ing sites, such as foliage, tree trunks, and other open 
spots [11–13]. Bats that used more caves to roost and 
remained in caves for longer times were more likely to 
be infested by ectoparasites [14]. Moreover, the morpho-
physiological traits of bat hosts, such as sex, body con-
ditions, and reproductive cycle, were found to affect the 

host preference of bat flies or level of bat fly parasitism 
[15–17]. The life histories and morphological traits of 
ectoparasites are also the key determinants in their dis-
persal capability [18, 19]. Vegetation type and seasonality 
could also promote changes in the bat-bat fly interaction 
network in a region [20]. Recent studies demonstrated 
that bat flies generally exhibited high host specificity and 
often formed distinct species assemblages on their host 
bat species [21]. Individual bat species typically support 
one to five species of bat flies [22] with phylogenetically 
distant bat fly species co-occurring on a similar host 
occupying different areas of the host’s body to reduce 
competition for space and resources [23].

Although the distribution, species richness, and host-
ectoparasite associations of bat flies in the Americas, 
Africa, and Southeast Asia have been relatively well 
documented over the years, knowledge on bat flies in 
East Asia, especially China, is largely lacking [24, 25]. 
Considering the importance of this geographic region in 
multiple outbreaks of severe zoonotic diseases linked to 
bats [26, 27], understanding the diversity of bat flies and 
their association to bats in this region appears especially 
urgent from ecological and public health perspectives. 
Bats are well known to be important natural reservoirs of 
zoonotic pathogens [28], and bat flies were proposed to 
function as vectors for certain bat-associated pathogens, 
in which some also possess high zoonotic potential [29, 
30].

One difficulty of bat fly research for understudied 
regions is the identification of specimens based on a few 
taxonomic publications developed more than half a cen-
tury ago [31–34] from a limited and incomplete pool of 
species, a problem more widely known as the Linnean 
shortfall [35, 36]. Occurrences of cryptic species and 
phenotypic plasticity represent additional difficulties 
to morphologically distinguish bat fly species [33, 37]. 
DNA barcoding was thus recommended as a potential 
approach to reliably separate bat fly species [13, 37]. In 
this study, we sought to determine the species richness, 
phylogenetic relationships, and host association pat-
terns of bat flies found on 11 cavernicolous bat species 
occurring in China, using both morphological and DNA 
barcoding approaches. Hong Kong, located in the sub-
tropical region of East Asia, is home to 25 bat species 
recorded to date [38]; however, the bat flies parasitizing 
many of these bats in the region remain undocumented. 
Specifically, we aimed to (i) use morphological charac-
teristics and DNA barcoding to distinguish and identify 
the bat fly species found on 11 cavernicolous bat species 
in Hong Kong; (ii) determine the phylogenetic relation-
ships among the bat fly species; (iii) elucidate the patterns 
of bat-bat fly association and evaluate the degrees of 
specificity of each bat fly species to their host species. In 
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addition, we also (iv) assemble the mitogenomes of one 
nycteribiid and two streblid species from different genera 
to enrich the limited genetic resources available from bat 
flies for assisting primer design and species identification 
in future studies. Our findings will provide new knowl-
edge on the species richness of bat flies and the bat-bat 
fly association network, reflecting the ecological and 
coevolutionary relationships among bat and bat flies, in 
an understudied region of unneglectable public health 
concern.

Methods
Specimen collection
Bats roosting in abandoned mines, water tunnels, and 
culverts in Hong Kong were captured by hand-held hoop 
nets during 2018–2022. To avoid inter-host contamina-
tion of bat flies, only one bat was kept in each sterilized 
cloth bag. Each bat was identified to species by morphol-
ogy [39]. Miniopterus magnater and Miniopterus fuligino-
sus were morphologically similar, so we used a sterilized 
wing punch tool to collect 5-mm tissues from the wing 
membranes for DNA barcoding to confirm their species 
identity [40]. Bat flies were collected from each bat using 
a blunt-end forceps. All bats were released back into the 
wild after sample collection. All samples were immedi-
ately preserved in absolute ethanol in the field and stored 
at −20 °C on the same day until microscopic examination 
or DNA extraction.

Microscopic examination and DNA barcoding
We examined and photographed all bat fly specimens 
using a compound microscope (Leica M205 C, Wetzlar, 
Germany). We separated the bat flies based on their sex 
and identified the species in each sex based on their mor-
phologies [31–33]. A subset of the specimens from each 
morphospecies in each sex of bat fly (120 samples) and 
all Miniopterus tissues were then proceeded to DNA 
extraction using the E.Z.N.A. Tissue DNA Kit (Omega 
bio-tek, Norcross, USA). We DNA barcoded each sam-
ple by using the primer pair LCO1490 (forward primer: 
5’GGT CAA CAA ATC ATA AAG ATA TTG G 3’) and 
HCO2198 (reverse primer: 5’TAA ACT TCA GGG TGA 
CCA AAA AAT CA3’) to amplify a 658 bp DNA fragment 
from the mitochondrial cytochrome c oxidase subunit 
I gene (COI) [41]. Each DNA barcoding PCR was per-
formed in 30 μl reaction, containing 6 μl 5X GoTaq Flexi 
Buffer, 0.6  μl 10  mM dNTP Mix, 3.6  μl 25  mM  MgCl2, 
0.15  μl 5  U/μl GoTaq G2 Flexi DNA Polymerase (Pro-
mega, Madison, USA), 1  μl extracted DNA, 0.6  μl of 
each primer, 6  μl 10% DMSO (Sigma, Burlington, MA, 
USA), and ultrapure water. Thermal cycling condition of 
the PCR was 95 °C for 2 min; 35 cycles of 95 °C for 30 s, 
56 °C for 30 s and 72 °C for 1 min; and final extension at 

72  °C for 5 min. The target sizes of PCR products were 
confirmed by gel electrophoresis, and the PCR products 
were sequenced by BGI (Shenzhen, China).

Phylogenetic analysis
Seventy-one COI sequences of bat flies were used for 
phylogenetic analysis, in which 20 and 51 sequences were 
obtained from this study and Genbank, respectively. We 
aligned the sequences with Clustal W [42] algorithm 
using MEGA 6.06 [43]. We used ModelFinder in IQ-Tree 
v2.20 [44] to find the best-fit model of nucleotide substi-
tution, which was the General Time-Reversible (GTR) 
model with gamma-shaped (G) distribution across sites 
and invariable sites (I). Maximum likelihood (ML) and 
Bayesian inference (BI) methods were used for the recon-
struction of phylogenetic trees. The ML tree was run for 
1000 bootstrap replications using IQ-Tree v2.20 [44]. A 
Markov chain Monte Carlo (MCMC) search was initi-
ated with random trees and run for 2,000,000 generations 
using MrBayes v3.2.7 [45], with a sampling frequency of 
every 1000 generations, and the first 25% of samples were 
discarded as burn-in. Trees were visualized using FigTree 
v1.4.4 [46]. We calculated the pairwise p-distances using 
MEGA 6.06 [43]. Identities of bat fly species with distinct 
COI sequences (> 2% difference) [47] were cross-checked 
with the morphological descriptions and illustrations 
presented in the literature [31–33].

Host specificity analysis
We estimated the host specificity of each bat fly species 
by calculating (i) number of bat fly-infested bats of a bat 
species (Nb); (ii) number of bat flies of a bat fly species 
found on the bats of a bat species (Ne); (iii) number of 
bats of a bat species infested with a particular bat fly spe-
cies (Nib); (iv) specificity index (SI), which is the percent-
age of total number of bat flies of a single species found 
on the host bats of a bat species, i.e. SI of bat fly species 
A = Ne of species A/total number of species A individu-
als found on all bats × 100 [48].

Mitogenome assembly and annotation
DNA library of 350-bp insert size was prepared for each 
of the three bat fly species (i.e. nycteribiid Phthiridium 
sp. A and streblids Brachytarsina amboinensis and Ray-
mondia sp. A). The libraries were sequenced on an Illu-
mina NovaSeq instrument (PE 150 bp reads) for 8 G per 
sample at Novogene. We filtered the sequencing reads 
using fastp [49] and evaluated the quality of filtered reads 
with FASTQC [50]. Then, we assembled the mitogenome 
by MIRA v4.0 [51] and MITOBIM.PL v1.6 [52], using a 
house fly mitogenome (Musca domestica, accession no. 
NC024855.1) as a reference. We annotated these three 
mitogenomes using MITOS [53] and GeSeq [54]; then, 
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we checked the annotation manually based on the anno-
tations from the mitogenomes of three close relatives 
(NC024855.1: Musca domestica, MK896866.1: Para-
trichobius longicrus, and MK896865.1: Paradyschiria 
parvula). The protein translation was corrected accord-
ing to the BLAST results and the annotations of these 
three close relatives. The final mitogenome annotations 
were visualized using OGDRAW [55].

Results
Bat fly identification
We collected 641 bat flies from 271 bats representing 11 
bat species in five bat families, i.e. Rhinolophus sinicus, 
R. affinis, and R. pusillus in Rhinolophidae; Myotis chin-
ensis, M. pilosus, and M. horsfieldii in Vespertilionidae; 
Miniopterus magnater, M. fuliginosus, and M. pusillus in 
Miniopteridae; Hipposideros gentilis in Hipposideridae; 
and Rousettus leschenaultii in Pteropodidae (Table  1). 
We found 20 bat fly species, with 12 and eight species 
belonging to Nycteribiidae and Streblidae, respectively 
(Fig. 1 and Additional file 1: Figs. S1-S20). Regarding the 
nycteribiids, there were five Nycteribia spp., three Penicil-
lidia spp., two Phthiridium spp., one Basilia sp., and one 
from a hitherto unknown genus (Nycteribiidae species 
A) (Fig. 1 and Additional file 1: Figs. S1-S12). These nyc-
teribiids all belong to the subfamily Nycteribiinae. For the 
streblids, we identified B. amboinensis (Rondani 1878), 
three Raymondia spp. [31, 32], and four Brachytarsina 
spp. (Fig. 1 and Additional file 1: Figs. S13-S20). They all 
belong to the subfamily Brachytarsininae. Species iden-
tified at the genus or family levels could be classified to 
neither species level based on COI nor morphology. Both 
sexes of each species were found except for five species 
(Table 1). All streblids found in this study possessed func-
tional wings.

Phylogenetic relationships among the bat fly species
Among the Nycteribia spp. identified, Nycteribia sp. 
A was the most distantly related to the other four Nyc-
teribia spp., and it grouped with a Nycteribia specimen 
known from China (p-distance = 0.3%) (Fig.  2; refer to 
Additional file 1: Fig. S21 for the phylogenetic trees using 
more conspecifics for each identified species). Nycteribia 
sp. B clustered with a Nycteribia specimen from Japan 
(P-distance = 0.3%) identified as Nycteribia allotopa. In 
a separate clade, another two sequences also identified 
as N. allotopa clustered with Nycteribia sp. D (P-dis-
tance = 2.7–3.7%) and sp. E (P-distance = 5.3–5.5%). 
Nycteribia sp. E resembled N. allotopa the most among 
the species of Nycteribia from Hong Kong accord-
ing to the taxonomic information within Speiser (1901) 
[33]. Nycteribia sp. F was closely related to a specimen 
identified as Nycteribia parvula from the Philippines 

(P-distance = 3.2%) (Fig.  2). Phthiridium sp. A clustered 
with a specimen identified as Phthiridium hindlei from 
Japan (P-distance = 2.4%) and a specimen identified as 
Phthiridium sp. from South Korea (P-distance = 2.7%) to 
form a well-supported clade. Phthiridium sp. B grouped 
with an unidentified species of Phthiridium from China 
(P-distance = 0.8%). In the polyphyletic genus Basilia, 
Basilia sp. A was closely related to Basilia nana identi-
fied from Hungary (P-distance = 4%) (Fig. 2). Penicillidia 
sp. A grouped with Penicillidia oceanica identified from 
the Philippines (P-distance = 2.1%) and further clustered 
with Penicillidia sp. B as a clade. Penicillidia sp. C was 
sister to this clade. Nycteribiidae species A is sister to the 
clades of the four aforementioned nycteribiid genera, but 
its exact genus identity could not be determined (Fig. 2).

All streblid species identified belong to the Old World 
Streblidae, which is a paraphyletic group clustered with 
Nycteribiidae [9] (Fig. 2). Raymondia sp. B and sp. C were 
highly divergent (P-distance = 7.9%), and they grouped 
together and formed a clade with Raymondia sp. A. The 
clade of Raymondia spp. was sister to a clade of two spe-
cies of Streblidae from Uganda (P-distance = 15.4–18%; 
Fig.  2). These two sister clades formed a monophyletic 
group with Nycteribiidae instead of other Old World 
Streblidae. Raymondia sp. C highly resembled Raymon-
dia pagodarum (Speiser 1900) based on morphology 
[31], but no COI sequence of Raymondia species was 
available in GenBank. Brachytarsina sp. E was closely 
related to an unidentified specimen of Brachytarsina 
sp. from South Korea (P-distance = 1.7%). Brachytar-
sina amboinensis grouped with Brachytarsina kanoi in 
Japan (P-distance = 2%) as a clade and clustered with 
the clade of Brachytarsina sp. B and sp. D (p-distance 
between B and D = 3%). No COI sequence of B. amboin-
ensis was available in GenBank. Brachytarsina sp. B and 
sp. D were superficially similar to Brachytarsina werneri 
(Jobling 1951) but slight morphological differences could 
be observed [32]. For example, the two lateral parts of 
the seventh tergite present in female B. werneri were not 
observed in Brachytarsina sp. B and sp. D. Brachytarsina 
sp. C is the most divergent from the four aforementioned 
Brachytarsina species (Fig. 2).

Patterns of bat‑bat fly association
The bat fly species that exhibited the highest host speci-
ficity (SI = 100, Fig.  3, and Table  1) included nycteribiid 
Phthiridium sp. A, Nycteribia sp. A, Nycteribia sp. F, and 
streblid Raymondia sp. A. Remarkably, each of these bat 
fly species was highly specific to a single bat species in 
a different family, i.e. Phthiridium sp. A (n = 128) on R. 
sinicus in Rhinolophidae; Raymondia sp. A (n = 55) on 
H. gentilis in Hipposideridae; Nycteribia sp. A (n = 23) 
on M. pilosus in Vespertilionidae; and Nycteribia sp. F 
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(n = 7) on M. pusillus in Miniopteridae. Nycteribia sp. E 
also showed high host specificity (SI = 92.86, n = 13) to 
M. pusillus (Fig. 3 and Table 1).

Despite small sample sizes, two bat fly species were 
the only species associated with their host bat species, so 
these bat-bat fly relationships were also highly specific. 
They were nycteribiid Basilia sp. A (SI = 100, n = 2) and 
streblid Brachytarsina sp. C (SI = 100, n = 3), which were 
found on M. horsfieldii and R. leschenaultii, respectively 
(Fig. 3 and Table 1).

Streblid Brachytarsina spp. were detected on nine of 
the 11 bat species surveyed (except M. horsfieldii and R. 
pusillus). Brachytarsina amboinensis was prevalent (38% 
of total bat flies) and it showed the lowest host specificity 
(SI = 0.41–39.02) among all bat fly species, being found 
on six bat species in three families. It was abundant on 
Miniopterus but absent from Rhinolophus species. Other 

bat fly species with relatively low host specificity included 
Brachytarsina sp. B (SI = 3.84–61.54), which occurred 
on three bat species in two families such as Rhinolophus 
species, as well as nycteribiid Penicillidia sp. C (SI = 6.9–
51.72), which was specific to Miniopterus but found on 
all three Miniopterus spp. (Fig. 3 and Table 1).

Mitogenomes of three bat fly species
The total number of mapped reads of Phthiridium 
sp. A, B. amboinensis, and Raymondia sp. A were 
2029937, 891049, and 492479, respectively. The com-
plete mitogenomes of Phthiridium sp. A, B. amboinen-
sis, and Raymondia sp. A showed slight difference in 
sizes (Fig.  4). The total lengths of these three mitog-
enomes were 16155  bp, 16480  bp, and 16514  bp, 
respectively. These mitogenome sizes were very simi-
lar to those of other calyptrates (14–16  k  bp), e.g. 
Musca domestica is 16108 bp, Paratrichobius longicrus 

Fig. 1 Images of the dorsal views of female bat flies, unless otherwise specified. Bat flies labeled a-l and m-t belong to Nycteribiidae and Streblidae, 
respectively. a Nycteribia sp. A; b Nycteribia sp. B; c Nycteribia sp. D; d Nycteribia sp. E; e Nycteribia sp. F; f Phthiridium sp. A; g Phthiridium sp. B, male 
only; h Basilia sp. A; i Penicillidia sp. A; j Penicillidia sp. B; k Penicillidia sp. C; l Nycteribiidae species A, male only, scale bar unavailable; m Raymondia 
sp. A; n Raymondia sp. B, male only, scale bar unavailable; o Raymondia sp. C, image shown was a protease-digested specimen and abdomen was 
contracted; p Brachytarsina amboinensis; q Brachytarsina sp. B; r Brachytarsina sp. C; s Brachytarsina sp. D, male; and t Brachytarsina sp. E, male only. 
Blue scale bar = 1 mm. Refer to Additional file 1: Figs. S1–S20 for the corresponding images of the ventral views of females and the dorsal and 
ventral views of males
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is 16296  bp, and Paradyschiria parvula is 14588  bp 
[56, 57]. There are 37 genes within each mitogenome, 
including 13 protein-coding genes (PCGs), 22 trans-
fer RNA genes (tRNAs), two ribosomal RNA genes 
(rRNAs), and one non-coding control region (CR) 

(Fig.  4). The organization and structures of genes in 
these three mitogenomes were identical, with 23 genes 
(including nine PCGs and 14 tRNAs) encoded on the 
heavy strand and 14 genes (including four PCGs, eight 
tRNAs and two rRNAs) encoded on the light strand.
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Discussion
Both evolutionary and ecological factors were suggested 
to be important for shaping the patterns of host associa-
tion of bat flies, and some previous studies examined the 
significance of either one or both factors in explaining 

these patterns [58–60]. These studies demonstrated 
that bat flies generally showed variable degrees of host 
specialization and low cophylogenetic congruence to 
their hosts, indicating that extant patterns of bat-bat 
fly association may not be contributed by cospeciation. 

Fig. 3 Host-ectoparasite association network. Web of interactions between bat fly species (right) and bat species (left). The width of bars is 
proportional to the number of bat fly individuals. Names of species that belong to the same genus are in the same color. Bat  photos©Agriculture, 
Fisheries and Conservation Department
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Remarkably, the bat-bat fly association unveiled in this 
study clearly showed that certain closely related bat flies 
within Nycteribiidae and Streblidae had affinities toward 
particular host bat species that are phylogenetically more 
closely related. For example, we observed that the con-
generics of Nycteribia and conspecifics of B. amboinen-
sis only infested hosts in Myotis and Miniopterus, which 
belong to two closely related families in Vespertilionoidea 
[61], whereas congenerics of Raymondia only parasitized 
hosts in Rhinolophus and Hipposideros, which are in two 
closely related families in Rhinolophoidea. These bat fly-
bat genus associations observed were also supported by 
similar host associations of Nycteribia spp., B. amboinen-
sis, and Raymondia spp. revealed in other nearby regions, 
such as Thailand and Malaysia [62, 63].

From generalist to specialist: Bat‑bat fly association
Elucidating the true distribution patterns of bat flies in a 
community of host bats is crucial for understanding the 
complex ecology of bat fly parasitism. With recent care-
fully controlled bat fly surveys, volant streblids in the 
Neotropics were reported as highly specialized [48, 64], 

with most species being monoxenous (i.e. infesting only 
a single host species). Less specialized species were also 
mainly associated with their primary host species [21, 
65]. In this study, we found both generalist and specialist 
streblids that are monoxenous, stenoxenous (i.e. infesting 
two or more congeneric host species), or polyxenous (i.e. 
infesting two or more host genera) [65]. Recent records 
of B. amboinensis were mostly reported from the Philip-
pines where the species infested multiple host species in 
Miniopterus, Myotis, Rhinolophus, and Hipposideros [66, 
67]. However, according to older records, B. amboin-
ensis also occurred in Taiwan and Japan, and those in 
Japan infested M. fuliginosus [68, 69]. Likewise, we found 
local B. amboinensis to be polyxenous, with specificity 
toward different host genera being unequal. About 77% 
B. amboinensis were associated with M. magnater and 
M. pusillus, whereas 22% parasitized M. pilosus and M. 
chinensis. Considering its flight capability, it was possi-
ble that the low host specificity was due to natural host 
switches or, alternatively but unlikely, random transfers 
[21]. Three other closely related Brachytarsina spp. were 
morphologically similar to B. amboinensis. However, 
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unlike B. amboinensis, they appeared either monoxenous 
or stenoxenous. Over 96% of Brachytarsina sp. B were 
associated with R. affinis and R. sinicus, and Brachytar-
sina sp. D and sp. E were only found on R. sinicus. Thus, 
B. amboinensis did not share the same host species and 
specificity with other closely related Brachytarsina spe-
cies. Notably, many individuals of other closely related 
Brachytarsina spp. and B. amboinensis were isolated from 
hosts captured in the same roosts on the same sampling 
dates, but only B. amboinensis showed this generalized 
association with several Miniopterus and Myotis species 
but not Rhinolophus. Thus, it is likely that B. amboinen-
sis is a generalist parasite and exhibited natural dispersal 
between bat host species, predominantly Miniopterus 
and Myotis.

In addition, we found three streblid species in genus 
Raymondia. Raymondia sp. A was strictly monoxenous 
and only parasitized H. gentilis. Almost no other bat fly 
species and no nycteribiid were found on H. gentilis. The 
monoxeny of Raymondia sp. A could be in part attrib-
uted to their roosting behavior. Hipposideros gentilis 
often co-roost with other host species in caves, such as 
R. pusillus, but individuals of H. gentilis in colonies usu-
ally maintain certain interbat spacing and guard their 
area against intrusion [39], which might lessen inter-host 
switching of streblids. Moreover, the mobility of Ray-
mondia spp. might be relatively limited by their tiny body 
sizes as Raymondia species were the smallest (< 1.5 mm) 
among all bat flies identified [31]. For Raymondia spp. B 
and C, we only secured one individual of each of these 
species, which infested R. pusillus and R. affinis, respec-
tively. Raymondia sp. C is morphologically highly similar 
to R. pagodarum, which were found to mainly parasitize 
Hipposideros spp. and Rhinolophus spp. in Asian regions 
[70, 71]. Hipposideros gentilis was also one of these host 
species that R. pagodarum infested in Thailand [63]. Ray-
mondia pagodarum and another species, Raymondia 
molossia, were also reported in China, but their hosts 
were unknown [31, 69].

In this study, we found more species in Nycteribiidae 
than Streblidae, which is consistent with the biogeo-
graphic pattern that Nycteribiidae species are primarily 
found in the Old World [10]. Compared to other identi-
fied nycteribiid genera, Nycteribia was the most species-
rich group with five species found locally. Nycteribia sp. 
A was closely related to a Nycteribia sp. found in Hubei, 
China, whose primary host was unknown [72]. We found 
that Nycteribia sp. A was the only Nycteribia spp. we 
identified that parasitized local Myotis spp., and it was 
monoxenous and only infested M. pilosus. In Hong Kong, 
even though individuals of M. pilosus commonly mix 
with those of Miniopterus spp. and M. chinensis to form 
packed aggregations in roosts [39], and this roosting 

structure likely facilitates interspecific host exchanges 
of bat flies, Nycteribia sp. A was absent from other host 
species. Nycteribia spp. in proximate regions, including 
Nycteribia quasiocellata found in Manchuria in China, 
Mongolia, and Kazakhstan and a Nycteribia sp. in Thai-
land, were other congenerics that infested Myotis petax 
and Myotis siligorensis, respectively [63, 73].

In the phylogenetic tree, two divergent clades in Nyc-
teribia contain the GenBank sequences identified as N. 
allotopa; thus, some N. allotopa in the tree were likely 
misidentified. Nycteribia sp. B was identical to a Nyc-
teribia species claimed to be N. allotopa in Wakayama, 
Japan, associated with M. fuliginosus [74]. Nycteribia 
allotopa was also reported in Taiwan, Korea, and Thai-
land where they also lived on M. fuliginosus [63, 68, 75, 
76]. In Hong Kong, there are three sympatric Miniop-
terus species, including M. magnater, M. pusillus, and 
M. fuliginosus, which are morphologically similar. Indi-
viduals of M. magnater or M. fuliginosus occasionally 
form tightly packed and mixed assemblages with those 
of M. pusillus, but co-roosting of M. magnater and M. 
fuliginosus is locally rare (AFCD unpublished data). Our 
results indicated that Nycteribia sp. B was stenoxenous 
and parasitized all three Miniopterus species; it was 
the only Nycteribia found on M. fuliginosus. Notably, 
the distribution ranges of M. magnater and M. pusillus 
do not include Japan, Korea, and Taiwan [77]. Moreo-
ver, N. allotopa was also reported to be found on other 
host species that were absent from Hong Kong, such as 
other species in Miniopterus, Rhinolophus, Pipistrellus, 
Megaderma, and Tadarida in nearby regions [71, 78–80]. 
These records might reflect the potential of Nycteribia sp. 
B in inter-host switching. The other two Nycteribia spp., 
Nycteribia sp. D and sp. E, were closely related to the 
Nycteribia that described as N. allotopa in Wakayama, 
Japan [81]. Yet unlike N. allotopa, Nycteribia sp. D and 
sp. E were not found on M. fuliginosus but predominantly 
infested M. magnater and M. pusillus, respectively.

Another identified nycteribiid genus in which the 
congenerics were exclusively associated with Miniop-
terus was Penicillidia. We found that Penicillidia spp. 
A, B, and C were all stenoxenous. Penicillidia sp. A was 
closely related to P. oceanica in the Philippines which 
infested Miniopterus schreibersi [82]. It parasitized both 
M. magnater and M. fuliginosus that rarely co-roost in 
Hong Kong. Penicillidia sp. B was associated with M. 
magnater and M. pusillus, which often co-roost. Penicil-
lidia sp. C were also found on M. fuliginosus. Other con-
generic species, e.g. Penicillidia jenynsii in Japan, also 
infested Miniopterus species [68]. Penicillidia monoc-
eros was reported to occur in Hubei in China and Mon-
golia, but those in Mongolia were reported to primarily 
infest Myotis petax [72, 73]. Notably, we observed that 
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Miniopterus spp. hosted the most diverse communities 
of bat fly species, with the number of species ranging 
from four to seven. Contrary to other bat genera, the bat 
fly species assemblages among the three congenerics of 
Miniopterus largely overlapped with each other, and they 
shared at least three bat fly species, including B. amboin-
ensis, Nycteribia sp. B, and Penicillidia sp. C. Due in part 
to the gregarious habits of Miniopterus species and their 
propensity to form tightly packed clusters in caves, Mini-
opterus individuals offered various opportunities to hori-
zontally transfer their bat flies, and these bat flies could 
find mates readily on multiple host species to reproduce, 
so adapting and exploiting tightly packed hosts in mul-
tiple congenerics should increase the abundance and 
overall fitness of these bat flies [18]. Slight intra-specific 
morphological variations were also observed within pop-
ulations of Penicillidia spp. B and C; it was proposed that 
phenotypic plasticity of an ectoparasitic species might 
confer greater fitness advantage in their ability to para-
sitize a wider range of host species [58].

While Penicillidia was found on Miniopterus exclu-
sively, identified species in Phthiridium were exclusively 
associated with Rhinolophus. Phthiridium sp. A was 
a close relative to P. hindlei found in Osaka, Japan, that 
lived on Rhinolophus ferrumequinum [81]. Records of 
other examples of Phthiridium spp. in China included P. 
hindlei infesting R. ferrumequinum in Shandong, P. sze-
chuanum found on R. pusillus in Sichuan, and P. orna-
tum parasitizing Rhinolophus sp. in Yunnan [25, 69, 
83]. Although Phthiridium sp. A was very abundant on 
R. sinicus and individuals of R. sinicus can form packed 
and mixed assemblages with those of R. affinis in Hong 
Kong, especially during winter, Phthiridium sp. A was 
strictly monoxenous. It was also the only nycteribiid spe-
cies found on R. sinicus, even though R. sinicus co-roosts 
with M. pusillus and M. pilosus, for example, which har-
bor other nycteribiids. Dispersal limitations, adaptative 
limitations, and reproductive isolation were several main 
explanations previously proposed to broadly account for 
how high host specificity of bat flies might evolve and be 
maintained [18]. However, mechanisms underlying bat-
bat fly relationships are complex, and most research on 
our studied bat fly genera mainly focused on host-para-
site occurrences and interactions; studies dealing with 
the ecology and biology of these studied genera and spe-
cies in detail were scarce. It remains of interest to inves-
tigate which factors are involved and how they might 
control the host specificity of these bat fly species.

Challenges and future directions
On a final note, we would like to highlight the challenge 
of species identification based on old taxonomic keys 
[31, 33, 68, 70], especially for regions with limited prior 

information on the bat fly community. Moreover, cryptic 
species and morphological plasticity are likely to be com-
mon in bat flies [29, 84, 85], making existing taxonomic 
keys insufficient for accurate species identification. In 
this study, most bat flies were morphologically distinct 
except a few cryptic species that were challenging to dif-
ferentiate. For example, Brachytarsina spp. B, D, and E 
were morphologically highly similar and shared the same 
hosts, but they were differentiated by genetic divergence. 
Slight variations in morphology were observed among 
conspecifics of Penicillidia spp. B and C, respectively, but 
revealed to be intraspecific variations by DNA barcod-
ing results. Therefore, as suggested by some recent stud-
ies [13, 37], we advocate identifying bat fly species using 
morphological characteristics with the support of DNA 
barcoding to discern bat-bat fly associations accurately 
in future studies. In addition to genetic data, provision of 
high-quality photos and formal species description with 
the development of new taxonomic keys will be crucial 
resources for efficient bat fly classification, which are 
especially important for understudied regions potentially 
with many undescribed species.

Conclusions
In this study, we found 20 bat fly species from a subtropi-
cal region in East Asia in which many of them appear to 
be new records. We have also unveiled the associations 
of these bat fly species to host bat species and revealed 
a range of host specificity among these bat flies. How-
ever, detailed information on the biology and ecology of 
bat flies, as well as host bat species, occurring in the East 
Asia region remains limited, which makes elucidation 
of the complex mechanisms underlying bat-bat fly asso-
ciations difficult. More studies on bat flies and bats in 
the region, such as from bat fly species discovery to their 
distribution and behaviors on hosts, will be essential to 
better understand how various evolutionary or ecologi-
cal factors shape the extant bat-bat fly relationships in the 
regions.
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S9. Images of Penicillidia sp. A: (a) ventral and (b) dorsal views of male 
and (c) ventral and (d) dorsal views of female. Scale bar = 1 mm. Figure 
S10. Images of Penicillidia sp. B: (a) dorsal and (b) ventral views of male 
and (c) dorsal and (d) ventral views of female. Scale bar = 1 mm. Figure 
S11. Images of Penicillidia sp. C: (a) ventral and (b) dorsal views of male 
and (c) dorsal and (d) ventral views of female. Scale bar = 1 mm. Figure 
S12. Images of Nycteribiidae species A: (a) dorsal and (b) ventral views, 
male only, scale bar unavailable. Figure S13. Images of Raymondia sp. 
A: (a) dorsal and (b) ventral views of female and (c) dorsal and (d) ventral 
views of male. Scale bar = 1 mm. Figure S14. Images of Raymondia sp. B: 
(a) dorsal and (b) ventral views, male only, scale bar unavailable. Figure 
S15. Images of Raymondia sp. C: (a) and (c) ventral and (b) dorsal views, 
female only. Scale bar = 1 mm for (a) and (b) and no scale bar available 
for (c). Images of (a) and (b) shown were captured from a protease-
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of Brachytarsina amboinensis: (a) dorsal and (b) ventral views of male and 
(c) dorsal and (d) ventral views of female. Scale bar = 1 mm. Figure S17. 
Images of Brachytarsina sp. B: (a) dorsal and (b) ventral views of male and 
(c) dorsal and (d) ventral views of female. Scale bar = 1 mm. Figure S18. 
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of the female shown were captured from a protease-digested specimen. 
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the ML bootstrap value.
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